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Abshad A formula governing the evolution of mist in moving filaments or ribbons of flnite 
extent is derived. ‘ Ib is evolution is shown to be nude up of a ‘dynamic’ pan corresponding 
to physical properties of the filament or ribbon and a ‘geometric’ part due to the motion of the 
filament or ribbon core itself. These results are used to extend classical elastic rod theay to 
the case of motion including dynamically evolving mist. In addition, the averaged geometric 
contribution is noted 10 be minus the time rate of change of the writhing number and it is 
shown that the writhe is a conserved quantity for closed filaments moving according to certain 
integrable c w e  dynamics. 

The occurrence of thin twisted filamentary structures is commonplace in many problems 
of physics. We present here a theory for the dynamics of such structures under imposed 
motions or internal and external forces. The possible applications of such a theory include, 
among other things, the dynamics of proteins and supercoiled DNA [l], writhing instability 
in fibres and cables [Z], motions of vortex tubes 131, magnetic flux tubes and modelling of 
sunspot formation [4]. This is not a new subject; motions of infinitesimally thin filaments 
(without twist) have been considered under a number of guises [3, 51, and the static theory 
of thin elastic rods is classical [6]. Here we consider the dynanaics of twisted ribbons and 
filaments offnite but small width in which the twist of a finite-width filament results in 
forces that drive the dynamics of the core filament. 

Consider a time-dependent 
differentiable space curve X ( u , f )  parametrized by a material (or intrinsic) parameter 
0 < U < L, i.e. one that moves with the curve, and let s be arclength (often f or U 

dependence will be taken to be implicit). Define A(o. t )  &/do. We denote spatial 
derivatives with respect to U using a dash and t derivatives using a dot. The tangent vector 
T of the curve X is given by T = A-’X’. As T is a unit vector then T.(dT/&) = 0 and, 
following standard conventions, we set d!l’/ds = AT‘ s KN where the curvature K(U.  t )  
is defined by K = JdT/dsJ. The unit vector N(u, t )  is called the normal vector; wherever 
K # 0, N is well defined and we can form a local coordinate triad by defining the binormal 
vector B(u. t) to be B = T x N .  For simplicity we assume that K = 0 occurs only at an 
isolated set of points. 

Twist is introduced in the following manner: let X be the centreline of a filament with 
some slight thickness 6 .  For simplicity we will assume that the cross section of the filament 
is always circular with constant radius E .  Straighten out the filament, cutting if necessary 
(i.e. if X is closed). Given a constant unit vector field V on X with 2’. V = 0, we define 
a reference ribbon (X, X + EV) to be the ribbon consisting of the points X ( u )  + UV, 
0 < U < L, 0 6 01 < E .  T h e  construction of a reference ribbon is fairly arbitrary; however, 
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We begin with the definition of a twisted filament. 
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this method of definition will be convenient later when elastic forces are introduced.) Now 
deform and twist the filament into the desired configuration, reconnecting ends if necessary. 
For simplicity we assume that T(u, t )  . V(u, t )  = 0 remains true for all t and U .  The 
reference ribbon may be considered to be half a longitudinal cross section of the filament, 
and the twist of the filament is the same as the twist of the reference ribbon. The twist 
o(u, t )  of the filament can be calculated using the reference ribbon. Since V(u, t )  is a unit 
vector, (d/ds)V = A x V for some A(u, t ) .  The twist is then given by 

W ( U ,  t )  = A(u, I)  . T(u, t )  = V x -V * T (1) 

i.e. the rate that V twists around the central curve X measured with respect to arclength. 
In the same manner (1) also defines the twist of a ribbon. We note that A o  = (V x V') - T 
is the twist measured with respect to the material coordinate U. 

We first consider kinematics. We allow the filament (or ribbon) to move continuously 
with a prescribed velocity of the central curve X ( o ,  I)  plus a prescribed twisting around 
that curve, requiring only that the cross section of the filament remain perpendicular to X 
(i.e. no longitudinal shear); in particular T(u, t )  . V(o, t )  = 0. We consider the effects of 
these two types of motion separately. First hold X steady and allow twisting. We then 
have V = f (U, t)T x V for some given f(u, t). Now, over an element of the filament 
from X ( u )  to X ( o  + Ao) 
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( 3 

f ( ~  + Au, t )  - f ( ~ ,  I) 

where 0 = 
Thus when X is fixed, 

o d s  = /" Aodu is the angle of rotation of the reference ribbon at X(o). 

(2 )  
d 

-(Am) = f'. 
dt 

This is a twist conservation law; (d/dt)AwAu, the rate of change of total twist in an element 
of the filament, is equal to the flux of twist through the ends. 

Now translate the filament without twisting (this is analogous to parallel transport). Then 
V = 51 x V for some 51 with 51 -T  = 0. As T -T = 0 we can write 51 = p T +  y T  x T 
for some p and y .  Using the condition V . T = 0, an easy calculation shows that p = 0 
and y = 1. Now although filament twisting has been ruled out for the moment, it is still 
possiblefor o to change due to motion of X itself. We calculate this change as follows: 
again consider a short element of the filament between X(u) and X ( u  + Au). We can 
find (d/dt)A0. the change in angle of rotation over the material element, by calculating the 
rotation rate (engendered by the motion of X) of V(u + Au) around T(u).  (Remember 
that V(u) does not rotate relative to T(u).) We find 

+ l r + A n  dt 
d 

AwdU -A0 

= Q(u + Au)) . T(u) 
= AK(u)[B(u).  *(cr)]Au 

using the relations Q = T x T,  T' = AKN,  and B = T x N .  In the limit A u  -+ 0, 
d 
- (Aw)  = A K ( ~ ) B  = AK -X 
dt (: ' > E  

(3) 

where ( - ) B  stands for the binormal component. 
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Write ri = qrT+q"+qgB (wherever K f 0). Using the FrenetSerret equations [7] 

(4) 
d 
- B  = -rN 

d 
-T = K N  
ds ds ds 

d 
- N  = -KT + r B  

(the scalar 5 is the torsion) we obtain 

(5)  

From this point forward we assume that K # 0 except possibly at an isolated set of points. 
There is no mathematical or physical necessity to this assumption; we make it merely 
because the Frenet triad T, N ,  B, is a conveniently (and commonly) used basis. In 
general, one could choose a basis arbitrarily, in which case the form of equations (4) (and 
thus subsequent equations) would be altered. Now, putting (2) and (5) together gives 

d 
- (Am) = K ( q ; ?  f A Z q N ) .  
dr 

(6) 
d 
- (Aw) = f'+ K ( q b  + A r q N )  
dt 

for general motions of the filament or ribbon. We point out an analogy between the change 
in w under motions of a ribbon and the geometric phases found in classical and quantum 
mechanics [SI. Under this analogy the first term on the right of (6) arises from the motion 
of X + EV around X and can be considered to be the 'dynamical' variation of w, while the 
second term arises from the transport of the ribbon by motions of X and can be considered 
as the 'geometrical' variation of w .  We note, however, that the latter variation has physical 
relevance without reference to the closed paths that are usual in the theory of geometrical 
phases. Furthermore when we come to the consideration of elastic forces, both parts of 
(6) will have direct energetic consequences. We also note that there are some interesting 
parallels between the ribbon evolution formula (3) and recent considerations of anholonomic 
phases in magnetic chains [9]. 

Now, dotting X' = AT with T and taking a time derivative gives 

Equations (6) and (7) together with the known evolution equations (see Keener [3]) 

form a set of intrinsic equations for a twisted ribbon or filament under the prescribed motion 
X = qTT + q" + ~ B B .  We note that equation (8) is of the same form as (6). This is 
because t is in fact the twist of the Frenet ribbon (defined by V = N )  as is verified by the 
equation r = (N x (d/ds)N) - T. The Frenet ribbon is not a true physical ribbon as it is 
undefined at inflection points. Nevertheless away from inflection points it evolves locally 
as a ribbon with twist r ,  and thus r obeys an evolution equation of the form (6). 

We digress for a moment to consider the connection between filament dynamics and 
integrable PDEs, a topic of perennial interest [3, 51. In particular, we consider closed non- 
self-intersecting filaments with X and V periodic functions of u. Under these circumstances 
we have the famous law Lk = (2n)- 'Tm + W r  where Lk is the linking number of the 
curves X and X + EV (an invariant unless the ribbon crosses itself), Tw is the total twist 
f Am do,  and W r  is the writhing number of X [ 101. Formula (6) implies that under the 
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dynamics of X we have (d/dt)Tw = $K(qb + ArqN)do. As (d/dz)Lk = 0, this implies 
that 
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27r '4 d 
-Wr = -- x(qL+ArqN)du. 
dt 

Allowing for inflection points X(u, ) ,  X(UZ),. . . , X(un+])  = X ( q ) ,  we have 

A mathematical derivation of this result has been previously obtained via a different method 
in [I l l .  

Suppose we make the choice X = ~B-this is the local induction approximation CIA) 
of vortex filament dynamics [3]. Under these dynamics the function @ K exp(i J" r du) 
satisfies the nonlinear Schrodinger equation W S )  $ + +"+ 1@1$1* = 0. We observe that 

Thus LIA conserves the writhing number up to crossings of the vortex filament. As a second 
example, choose = - ~ A K ?  - K'N - KrB. In this case A = 0 and if A(u, t = 0) = 1 
then A@, t )  = I .  Under these dynamics @ satisfies the complex modified KdV equation 
$ + $1@12@'+ @'"=O [ 5 ] .  Here we have 

Again we see conservation of writhing number under the curve dynamics up to filament 
crossing. (This may not be immediately obvious as in general r = 00 at inflection points; 
however, using the formula 

(9) becomes clear.) More generally, Langer and Perline [5] have shown how to construct 
a sequence of arclength preserving velocities X ( j ) ,  0 < j i 00, such that under the action 
of X G ) ,  @ satisfies the jth equation in the NLS hierarchy (the first two velocities of this 
hierarchy are the two examples given above). The construction is carried out formally using 
the recursion formula 

X") = KB 
X t i t l )  = T +Cj) +N(T +W)T 

= no) + N ( n q T  
where the normalizer N(T x ? ( j ) )  = ss K((d/ds)q$' + , sqg)ds  is the tangential velocity 
necessary to conserve arclength under the flow T x TG) (see equation (7)). Thus the 
condition that (d/dt)Wr = 0 for the jth flow XO of the hierarchy is exactly the same 
condition necessary to ensure that the tangential component of the (itl)th flow is well 
defined on closed curves, namely $K((d/dS)qg) + rq$))ds = 0. Thus in addition to the 
known connection of integrable curve dynamics to arclength preservation, we see that there 
is also a close connection to the geometric property of writhe conservation. 

Using the derived kinematics we now introduce dynamical equations for a filament 
with twist under elastic forces beginning from the classical theory of thin filaments [6, 121. 
The main new idea here is to follow the evolution of the twist rather than the evolution 
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of the reference ribbon because, in principle, the twist is the more natural physical and 
computational object. Consider then an infinitesimal element of the filament from X ( s )  to 
X + d X  = X ( s  + As) of length As bounded by two cross sections. Let F(s, t )  be the 
internal stress on the cross section at X(s ) .  A force F + AF acts on the upper end of 
the element and a force -F acts on the lower end for a total force AF. Let K be the 
‘external‘ force on the filament per unit length which for our purposes we take to be the 
negative of the inertial force plus other forces g ( s ,  t )  (e.g. contact and drag forces). Then 
( - p X  + g)As is the external force acting on the element where p is the density per unit 
length. We thus have AF + ( - p X  + g)A.s = 0, so that 

(10) 

A second equation comes from the balance of moments. Let M(s,  t )  be the moment 
of the internal stresses on a cross section. The total moment on the filament element (with 
respect to the upper end) is calculated as follows: the stresses on the upper end give a 
contribution M + A M .  The lower end gives a contribution -M + (-AsT) x ( -F) .  
There is also an ‘external’ couple J which for our purposes we take to be the torsional 
inertia -IBlxAs. Here I is the moment of inertia of the cross section and 0lx refers to 8 
with the filament position X held fixed. Hence 

d 
ds 

p X  = -F + g .  

(11) 
d 
-M = F x T + IBlxT. 
ds 

Elasticity theory gives us M as a function of X (using the thin filament assumption). In 
the case of linear elasticity, 

[6] where E is the Young’s modulus and C the torsional rigidity. 

tangential component of (1 1) gives C(d/ds)o = I J l x .  Using (3) we can write this as 

M = EIKB + CWT (12) 

We now write down dynamical equations for the linearly elastic filament. First, the 

This is the traditional torsional wave equation of thin rod theory plus a term arising from 
the motion of the filament itself. 

Now, using (12) and (4). the normal and binormal components of (11) are 
d 
ds 

FN = - E I - K  

FB z CWK - E I K z .  
The tension FT is undetermined from (1 1) and must be considered separately. FT is 
the longitudinal stress at the cross section times the area r c 2  of a cross section and is 
proportional to the local filament expansion. Thus for instance if X(u) is a material 
parametrization of the filament such that dujds = 1 in a relaxed state (no tension), then in 
a general state FT = JCC*E(A - 1). 

Finally, using (10) we obtain 

(13) and (14) are the evolution equations for a thin isotropic filament under linear elastic 
forces. 
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